If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9.8t^2+20t+60=0
a = -9.8; b = 20; c = +60;
Δ = b2-4ac
Δ = 202-4·(-9.8)·60
Δ = 2752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2752}=\sqrt{64*43}=\sqrt{64}*\sqrt{43}=8\sqrt{43}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{43}}{2*-9.8}=\frac{-20-8\sqrt{43}}{-19.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{43}}{2*-9.8}=\frac{-20+8\sqrt{43}}{-19.6} $
| 2(4x-7)=3(5-x) | | x+15/100=85 | | Y=-5/8x+7 | | -8-e=-40-3e | | 6/8=n/10 | | 2=-4y-6 | | -4y-3=21 | | -9y-2=-56 | | -32=-39-y/8 | | -5y=97 | | -3(-4+-6y)+7(-6y+5)=-8 | | 3(-6+5p)=3(p-2) | | 3(p+7)-4p-1=-5(2p-3)+1 | | 7(k+4)=6(k+6)-3k | | 3+5(4v-1)=138 | | 180=x+64+45 | | 96=-3(-7n+3) | | 96=-3(-7n+3 | | 4(+24=7x | | 7(2a-8)-1=-99 | | -2=m+10/2 | | -16=m/20 | | 29=v/5+14 | | x/6-33=-129 | | 0.3(480)+0.55x=0.4(0.3+x) | | 4x10x=400.000 | | 8-(x-2)=x | | 1p=245 | | -8=1/5(10x+5) | | 9.522/9=k | | x+165+119=180 | | 4x-2(200-x)=754 |